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Event Valence

Consider the event  that your favorite sports team loses the next game 

A bet that pays off if  happens would seem to be a “hedge” against 
disappointment — maybe even traded off against a (small) downside if 
not-  happens 

Instead, in lab-in-field settings, Morewedge et al. (2018), Kossuth et al. 
(2020), and Donor et al. (2023) found “hedging aversion” 
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Negative Probability

Assume  … then Monotonicity precludes  

We are looking for a representation: 

   

(1,1) ≽ (0,0) (0,0) ≻ (0,1)

(1 − p) × u(0) + p × u(1) < u(0)

Make  negative!p



What About Entropy?

Jaynes (1957a, 1957b) argued that the “correct” application of the 
principle of insufficient reason is to choose a probability measure that 
maximizes entropy subject to the operative constraints 

What happens if we blend these two threads? 

With negative probabilities, Shannon entropy may involve complex 
numbers — which would seem to undermine its meaning as the amount 
of uncertainty in a system 

Negative probabilities also necessarily arise in phase-space 
representations of quantum mechanics (but this is another story) 

Define signed Shannon entropy as a fix? 

H±(p) = − ∑
i

|pi | log |pi |
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From Unsigned to Signed Rényi Entropy

Bookkeeping axioms together with extensivity 

 

characterize the Rényi parametric family (for ) 

 

Requiring real-valuedness and extending continuity to negative values 
characterizes: 

H(p ⊗ q) = H(p) + H(q)

α > 0 with α ≠ 1

Hα(p) = −
1

α − 1
log(
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Properties of Signed Rényi Entropy

Note that signed Rényi entropy generally diverges at  and does not 
yield signed Shannon entropy there 

Theorem: A signed (probability) measure  contains at least one strictly 
negative entry if and only if there is an  such that .  
Signed Shannon entropy does not witness negativity in this way. 

Theorem: If , then  is Schur-concave.  Signed Shannon 
entropy is not Schur-concave.

α = 1

p
α > 1 H±

α (p) < 0

α > 1 H±
α (p)
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Properties of Signed Rényi Entropy contd.

Theorem (a signed H-Theorem): Let  evolve according to the Markov 
process  where  is a negative Laplacian.  If , 
then .

p
d /dt ⃗p(t) = Λ ⃗p(t) Λ α > 1

d /dt H±
α (p(t)) ≥ 0
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Properties of Signed Rényi Entropy contd.

For unsigned probability measures, Rényi entropy is non-increasing in 
.  Signed Rényi entropy can be non-monotonic.  This has physical 

implications when  is interpreted as a (dimensionless) inverse 
temperature parameter.  There may also be interesting decision-
theoretic implications.
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